
DATA

STRUCTURES

UNIT -4
CLASS NOTES

GRAPHS

feedback1correctionsivibha@pesu.pes.edu Vibha Masti

GRAPHS

° Non - linear data structure

° Set of vertices and edges

• Set of edges represents the relationship between vertices

° A graph G is defined as

G -- CV , E)

V : set of vertices
E : set of edges

A
E

C

B
F

G

D

V -- { A
,
B
,
C
,
D
, E ,
F
,
43

E =L (A
,
B)
,
CA
,
C)
,
CB
,
D)
,
CC,D) , CA , E) ,

CE
,
F)
,
CE
,
G)

,
CF
,
G)
,
CF

,D) , CG , D) 3

Undirected Graph
° pair of vertices representing an edge is unordered

u V

Directed Graph
• edges are directed Corder matters)

)

u V

weighted Graph
° Each edge has a numerical value attached to it

called weight . Eg : distance , difficulty
9

A D
4

12
E

2 3

87
B C

Adjacent Nodes

° Two nodes are adjacent to each other if there exists

an edge connecting the two

• If the graphs are directed
,
the nodes are each others '

successor and predecessor

Path

• Sequence of vertices that connect two nodes in a

graph

A
E

a valid
C

path from

B A to G

F

G

D

cycle

• Path that starts and ends on same node

° Graphs with at least one cycle are called cyclic graphs
and graphs without any cycles are called acyclic

A
E

a valid

c cycle in
this graph

B
F

G

D

Acyclic graph
° Trees are acyclic

E

>
B ?

>
C

A

> D
'

F

Incident

° A node is incident to an edge if the edge connects

that node to another node

Degree

° The degree of a vertex (node) is the number of edges
incident on it

degree =3
A

degree⇒
E degree =3

degree-- z
C

B degree=3

F

G degree =3

degree -_ 4
D

For Directed Graphs

In-degree
° number of edges incident to a vertex

out -degree

e number of edges incident from a vertex

in degree -- 2
out degree -- I

' E
B c in -- l ?

7 out =3

>
C

A

j
V

> D s F

DIRECTED GRAPH

• Number of possible pairs in an m- vertex graph is
MCM -D [assumming no self connections]

• Number of edges in a directed graph is Emcm-D as

the edge Ci, j) t edge Cj , i)

UNDIRECTED GRAPHS

• Number of possible pairs in an m- vertex graph is
MCM -D [assumming no self connections]

• Number of edges in a directed graph is E mcm-17/2 as

the edge Ci, j) = edge Cj , i)

'i' EIITEEEEHYTIITHI 'it of tttit 'THE

• Information required to represent a graph : set of
vertices and their edges

° Depending on density of edges , use and operations
performed, graphs are represented in one of two ways

1 . Adjacency matrix
° 2B - array

2 . Adjacency List
° Linked list

Adjacency Matrix

• nxn matrix M

o MCIICJI -- I if Ci
, j) is an edge

° Mfi] g- I -- o if Li
, j) is not an edge

° For undirected graphs, matrix M is symmetric and
MCITCJJ = M Cj Jli]

• Assume no node is connected to itself call diagonals o)

I 2 I 2 3 45

I O l l O O

L l O O l l
5 3 1 00 I 0

4 O l l O l
, diagonals

3 4
5 O l O l 0 are all 0

Undirected graph

I > 2
I 2 3 45

n l O l l O O

S L O O O O O

5 3 O O O l O

✓

'

4 Oo
l ooo ol y diagonals

5 I 0 are all 0
3 2 4

Directed graph

I
2

2 I 2 3 45

4 I 0 2 3 o o

2 2003 4
3 3 5 3 3 00 2 O

4 03 2004 , diagonals
3 4 4

5 04 O 4 are all o

2

weighted , undirected
graph

Drawbacks of Adjacency Matrix
° Number of nodes in the graph should be known prior to
creation

• To detect presence of edge takes OCD but to visit all

neighbouring nodes takes 0cm) TODO

• Can become sparse if there are few edges
• space complexity is 0cm) → n

' locations needed

Adjacency List

° Each node maintains a linked list of its neighbours

y array
of pointers

I 2
I → 2→ 3 → NULL

2 → I → 4 → 5 → NULL

5 3 → I → 4 → NULL

4 → 2 → 3 → 5→ NULL

3 4
5 → 2 → 4 → NULL

order does not matter

Undirected graph

→
node 1 degree of a vertex :

number of elements
node 2→ node 4 in linked list of

↳ node 5 that vertex

degree of 2 : 3

, array
of pointers

I > 2

n
I → 2→ 3 → NULL

> 2 → 5 → NULL

5 3 → 4 → NULL
7

✓ 4 → 2 → 5→ NULL

3 s 4 5 → NULL

order does not matter

Directed graph
node 2→ node 5

#define MAX_NODES 50

typedef struct graph {
 int n; /* Number of vertices in graph */
 int adj[MAX_NODES][MAX_NODES]; /* Adjacency matrix */
} Graph;

y array
of pointers

I
2

2 anode,weight
4 I → 2,2-73,3 → NULL

2 → 1,2 → 4,3-75,4 → NULL

3 3 5 3 → 1,3 -74,2 → NULL

4 → 2,3-73,2-35,4→ NULL

3 4 4 5 → 2,4-14,4-3 NULL
2

order does not matter

weighted , undirected
graph

¢ array
of pointers

6

1 32 to
erode,weight

n
I → 2,6 → 3,8 → NULL

> 2 → 5,10 → NULL

8 8 5 3 → 4,6 → NULL
7

V 4 → 2,8→ 5,10 → NULL

3 2 4 10 5 → NULL

6
order does not matter

weighted , directed
graph

Data structure representing Adjacency matrix

int indegree(Graph *adj_mat, int v) {

 int count = 0;

 for (int i = 0; i < adj_mat->n; ++i) {

 if (adj_mat->adj[i][v] == 1) {

 ++count;

 }

 }

 return count;

}

void create_graph(Graph *adj_mat) {

 int i, j;

 for (int i = 0; i < adj_mat->n; ++i) {

 for (int j = 0; j < adj_mat->n; ++j) {

 adj_mat->adj[i][j] = 0;

 }

 }

 while (1) {

 printf("Enter source and destination vertices: ");
 scanf("%d %d", &i, &j);

 if (i < 0 && j <= 0 || i >= adj_mat->n || j >= adj_mat->n) {
 break;

 }

 adj_mat->adj[i][j] = 1;

 }

}

Code Implementation

• create a graph

• Find the indegree of a node

int outdegree(Graph *adj_mat, int v) {

 int count = 0;

 for (int j = 0; j < adj_mat->n; ++j) {

 if (adj_mat->adj[v][j] == 1) {

 ++count;

 }

 }

 return count;

}

#define MAX_NODES 50

typedef struct node {

 int data; /* Value of the column of the connection */

 struct node *next;

} Node;

/* Inside main(), initialise the array of nodes */

Node *adj_list[MAX_NODES];

• Find the outdegree of a node

Data structure Representing Adjacency list

• use an array of node structures to represent multi - list

void create_graph(Node *adj_list[], int n) {

 int i, j;

 for (int i = 0; i < n; ++i) {

 adj_list[i] = NULL;

 }

 while (1) {

 printf("Enter source and destination vertices: ");
 scanf("%d %d", &i, &j);

 if (i < 0 && j <= 0 || i >= n || j >= n) {
 break;

 }

 // Both for undirected

 insert(adj_list, i, j);

 }

}

int outdegree(Node *adj_list[], int n, int v) {

 int count = 0;

 Node *traverse = adj_list[v];

 while (traverse != NULL) {

 ++count;

 traverse = traverse->next;

 }

 return count;

}

Code Implementation

• create a graph

• Find the outdegree of a node

int indegree(Node *adj_list[], int n, int v) {

 int count = 0;

 for (int i = 0; i < n; ++i) {

 Node *traverse = adj_list[i];

 while (traverse != NULL) {

 if (traverse->data == v) {

 ++count;

 }

 traverse = traverse->next;

 }

 }

 return count;

}

void insert(Node *adj_list[], int i, int j) {

 Node *new_node = (Node *) malloc(sizeof(Node));
 new_node->next = NULL;

 new_node->data = j;

 Node *traverse = adj_list[i];

 if (traverse == NULL) {

 adj_list[i] = new_node;

 return;

 }

 while (traverse->next != NULL) {

 traverse = traverse->next;

 }

 traverse->next = new_node;

}

• Find the indegree of a node

° insert helper function - insert to the end

←
insert to
the end

Enter the number of vertices: 10

Enter source and destination vertices: 0 1

Enter source and destination vertices: 0 2

Enter source and destination vertices: 0 3

Enter source and destination vertices: 1 4

Enter source and destination vertices: 4 7

Enter source and destination vertices: 7 9

Enter source and destination vertices: 3 5

Enter source and destination vertices: 3 6

Enter source and destination vertices: 5 7

Enter source and destination vertices: 5 2

Enter source and destination vertices: 6 7

Enter source and destination vertices: 6 8

Enter source and destination vertices: 8 9

Enter source and destination vertices: -1 -1

MAIN MENU

1. Indegree of a vertex

2. Outdegree of a vertex

3. Display matrix

4. Exit

3

0->1 2 3

1->4

2->

3->5 6

4->7

5->7 2

6->7 8

7->9

8->9

9->

Example output

GRAPH TRAVERSAL

Depth First search

° DFS - recursive function ; can start at any node

• Nodes that have been visited are marked as visited
nodes (stored in visited array)

° Analogous to preorder traversal : travels down the

depth of one node before backtracking and continuing
• Uses a stack for implementation

. For both directed and undirected graphs
• Consider the following directed graph , starting at l

l

L v u

4 3 2

n

u w u

7 6 5

V u v

9 8
°

%

Traversal

° visit①
,
mark as visited

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%
• visit ② mark as visited

1
← visited

l v u f visiting
4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

° visit ⑤ mark as visited

/
← visited

c v u
I

4 3 2

n

u u u

✓ visiting
7 6 5

V u v

9 8
°

%

• visit ⑧ mark as visited

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

• visit④ mark as visited

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%
° 10 is a dead -end : backtrack to 8
• 8 has no unvisited children

,
backtrack to 5

° 5 has no unvisited children
,

backtrack to 2
• 2 has no unvisited children

,
backtrack to l

e visit③ mark as visited

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

o 3 is a dead -end : backtrack to I
° visit ④ , mark as visited

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

• visit⑥
,
mark as visited

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

° 6 has no unvisited children
,
backtrack to 4

• visit 07
,
mark as visited

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%
° visit⑨ ,

mark as visited

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

backtrack
u
u

all the way10

(up ; after all
° have been

1,2 , 5, 8 , 10,3, 4,6 , 7,9 visited

Question 12

Write DFS traversal for the given graph (starting from
vertex D

V
-

v

I→ 2

v
v

visit next

3- 4 5 backtrack

¥
6 c- 7
v v

I
, 2 , 4,3 , 6,7 , 5

Question 13

DFS from node I

11 I
2%13

visit next

(ft t backtrack

4 5

€
. >
→

1
, 2,4 , 6,7 , 5,3

Question 14

For undirected graph , show DFS

✓
It
4 3v 2

"
visit next

(I 9 Id backtrack

7 6 v 5v

flirt
✓ 9 81
in↳
lov

I
,
2
, 5,8 , 6,3 ,4,7 , 9,10

Code Implementation - Adjacency Matrix

. Using recursion
• consider this graph

0

at
3 2 I

^

HI t
6 5 4

Htt
8 7

It
9

void dfs(Graph *adj_mat) {

 int vertex, *visited;

 // Accept user input

 printf("Enter source vertex: ");

 scanf("%d", &vertex);

 // Out of bounds

 if (vertex < 0 || vertex >= adj_mat->n) {

 printf("Vertex not in graph.\n");

 return;

 }

 // Initialise visited list and set to 0s

 visited = (int *) calloc(adj_mat->n, sizeof(int));

 // Call recursive function

 dfs_helper(adj_mat, vertex, visited);

 // Free memory used by visited

 free(visited);
}

void dfs_helper(Graph *adj_mat, int vertex, int *visited) {
 // Mark node as visited and display

 visited[vertex] = 1;

 printf("%d ", vertex);

 // Call dfs_helper on all of its unvisited connections
 for (int i = 0; i < adj_mat->n; ++i) {

 if (adj_mat->adj[vertex][i] == 1 && visited[i] == 0) {
 dfs_helper(adj_mat, i, visited);

 }

 }

}

Initialises Variables Es accepts inputs before calling dfs -helper

Actually performs DFS

Enter the number of vertices: 10

Enter source and destination vertices: 0 1

Enter source and destination vertices: 0 2

Enter source and destination vertices: 0 3

Enter source and destination vertices: 1 4

Enter source and destination vertices: 3 6

Enter source and destination vertices: 3 5

Enter source and destination vertices: 5 2

Enter source and destination vertices: 5 7

Enter source and destination vertices: 4 7

Enter source and destination vertices: 7 9

Enter source and destination vertices: 6 8

Enter source and destination vertices: 6 7

Enter source and destination vertices: 8 9

Enter source and destination vertices: -1 -1

MAIN MENU

1. Indegree of a vertex

2. Outdegree of a vertex

3. Display matrix

4. DFS traversal

5. Exit

4

Enter source vertex: 0

0 1 4 7 9 2 3 5 6 8

Example output

void insert(Node *adj_list[], int i, int j) {

 Node *new_node = (Node *) malloc(sizeof(Node));
 new_node->next = NULL;

 new_node->data = j;

 Node *temp = adj_list[i];

 adj_list[i] = new_node;

 new_node->next = temp;

}

Code Implementation - Adjacency list

. Using recursion

. consider this graph
0

at
3 2 I

^

HI t
6 5 4

1111
8 7

"

It
9

° new insert function : adds to the front of the list
(more efficient)

. insert in opposite (descending) order to achieve same

results

void dfs(Node *adj_list[], int n) {

 int vertex, *visited;

 // Accept user input

 printf("Enter source vertex: ");

 scanf("%d", &vertex);

 // Out of bounds

 if (vertex < 0 || vertex >= n) {

 printf("Vertex not in graph.\n");

 return;

 }

 // Initialise visited list and set to 0s

 visited = (int *) calloc(n, sizeof(int));

 // Call recursive function

 dfs_helper(adj_list, vertex, visited);

 printf("\n");

 // Free memory used by visited

 free(visited);

}

void dfs_helper(Node *adj_list[], int vertex, int *visited) {
 // Mark node as visited and display

 visited[vertex] = 1;

 printf("%d ", vertex);

 Node *traverse = adj_list[vertex];

 while (traverse != NULL) {

 if (visited[traverse->data] == 0) {

 dfs_helper(adj_list, traverse->data, visited);
 }

 traverse = traverse->next;

 }

}

Enter the number of vertices: 10

Enter source and destination vertices: 0 3

Enter source and destination vertices: 0 2

Enter source and destination vertices: 0 1

Enter source and destination vertices: 1 4

Enter source and destination vertices: 3 6

Enter source and destination vertices: 3 5

Enter source and destination vertices: 5 7

Enter source and destination vertices: 5 2

Enter source and destination vertices: 4 7

Enter source and destination vertices: 6 8

Enter source and destination vertices: 6 7

Enter source and destination vertices: 8 9

Enter source and destination vertices: 7 9

Enter source and destination vertices: -1 -1

MAIN MENU

1. Indegree of a vertex

2. Outdegree of a vertex

3. Display matrix

4. DFS traversal

5. Exit

4

Enter source vertex: 0

0 1 4 7 9 2 3 5 6 8

Example output

Breadth First search

• uses queue data structure with insert
,
delete

,
is - empty

functions

• Nodes that have been visited are marked as visited
nodes (stored in visited array)

• Analogous to level - by- level traversal of a tree

. For both directed and undirected graphs
• visit all vertices at the same depth at the same time

• Consider the following directed graph , starting at l

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

° Visit 1 (first node)
, append to queue 0--113

• Mark as visited
,
delete from queue

° Append 2,3 , 4 to queue G mark as visited 0=1213,43

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%
• Delete 2 from queue
° Append 5 to queue , mark as visited 6=13,4 , 5]

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

. Delete Cdequeue) 3 from the queue
• Append nothing to queue 0=14,53

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%
. Delete Cdequeue) 4 from the queue
° Append 6,7 to queue, mark as visited 9=15

, 6,7]

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

. Delete Cdequeue) 5 from the queue
° Append 8 to queue , mark as visited 9--16,7, ST

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%
. Delete Cdequeue) 6 from the queue
° Append nothing to queue 0=17,83

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

. Delete Cdequeue) 7 from the queue
° Append 9 to queue, mark as visited 9=18,93

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%
. Delete Cdequeue) 8 from the queue
° Append 10 to queue, mark as visited 9=19,103

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

. Delete Cdequeue) 9 from the queue
° Append nothing to queue 0=1103

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%
. Delete Cdequeue) 10 from the queue
° Append nothing to queue a -- CT c- empty queue : break

l

L v u

4 3 2

n

v j u

7 6 5

V u v

9 8
°

%

1,2 ,
3
,
4
,
5
, 6,7 , 8,9 ,

10

void bfs(Graph *adj_mat) {

 int vertex, *visited, *queue, qr = -1;

 // Accept user input

 printf("Enter source vertex: ");

 scanf("%d", &vertex);

 // Out of bounds

 if (vertex < 0 || vertex >= adj_mat->n) {

 printf("Vertex not in graph.\n");

 return;

 }

 // Initialise visited list and queue (init 0)

 visited = (int *) calloc(adj_mat->n, sizeof(int));
 queue = (int *) calloc(adj_mat->n, sizeof(int));

 // Loop

 append(queue, vertex, &qr);

 visited[vertex] = 1;

 // While queue is not empty

 while (qr != -1) {

 vertex = delete(queue, &qr);

 printf("%d ", vertex);

 for (int i = 0; i < adj_mat->n; ++i) {

 if (adj_mat->adj[vertex][i] == 1 && visited[i] == 0) {
 visited[i] = 1;

 append(queue, i, &qr);

 }

 }

 }

 printf("\n");

 // Free memory used by visited and queue

 free(visited);

 free(queue);

}

Code Implementation adjacency matrix

void append(int *queue, int v, int *pqr) {

 ++(*pqr);

 queue[*pqr] = v;

}

int delete(int *queue, int *pqr) {

 int res = queue[0];

 for (int i = 0; i < *pqr; ++i) {

 queue[i] = queue[i + 1];

 }

 --(*pqr);

 return res;

}

void bfs(Node *adj_list[], int n) {

 int vertex, *visited, *queue, qr = -1;

 // Accept user input

 printf("Enter source vertex: ");

 scanf("%d", &vertex);

 // Out of bounds

 if (vertex < 0 || vertex >= n) {

 printf("Vertex not in graph.\n");

 return;

 }

 // Initialise visited list and queue (init 0)

 visited = (int *) calloc(n, sizeof(int));

 queue = (int *) calloc(n, sizeof(int));

 // Loop

 append(queue, vertex, &qr);

 visited[vertex] = 1;

adjacency list

 // While queue is not empty

 while (qr != -1) {

 vertex = delete(queue, &qr);

 printf("%d ", vertex);

 Node *traverse = adj_list[vertex];

 while (traverse) {

 if (visited[traverse->data] == 0) {

 visited[traverse->data] = 1;

 append(queue, traverse->data, &qr);

 }

 traverse = traverse->next;

 }

 }

 printf("\n");

 // Free memory used by visited and queue

 free(visited);

 free(queue);

}

MAIN MENU

1. Indegree of a vertex

2. Outdegree of a vertex

3. Display matrix

4. BFS traversal

5. Exit

4

Enter source vertex: 0

0 1 2 3 4 5 6 7 8 9

Output for the same graph

Finding a Path in a Graph

° Find all the paths from a source to a destination

° Example : find all paths from 3 to 4

paths

> I
3-31-24

j

3 <

4
3 → I -32-34

u
7

' 2
3 -72 → 4

USING DFS

° start from source and traverse
, storing all vertices in

an array

. when destination reached
, print

° Using adjacency list

I → 2→ 3 → 4 → NULL

2 → 4 → NULL

3 → 1 → 2→ NULL

4 → NULL

Question 15

o → I

/ / f find paths from
✓ C O to 3 using DFS
2 → 3

Steps

° visit source co)

o → I visited -- 103

I f t path -- cos
2 → 3

• O is not destination

° visit adjacent node (D

o → I

/ / I
visited : co

,
, ,

✓ L U path = 10,13

2 → 3

• I is not destination

e visit adjacent node L2)

o → I

/ f y
visited : co

, 1,2,

✓ L U path = CO
, 1,2)

2 → 3

• 2 is not destination
° visit adjacent node (3)

o → I

/ / g
visited : co

, i.2,3]

✓ L U path = 10,1 , 2,3T
2 → 3

° 3 is destination
° Print path array and mark 3 as unvisited
• Remove 3 from path and backtrack

o → I

/ f y
visited : co

, 1,2,

✓ L U path = CO
, 1,2)

2 → 3

°

no unvisited adjacent node of 2
° mark 2 as unvisited

,
remove from path and

backtrack

o → I

/ / I
visited : co

,
,,

✓ L U path = 10,13

2 → 3

! go to unvisited adjacent node (3)

mark as visited

o → I

/ f y
visited : co

, 1,3]

✓ L U

path = CO
, 1,33

2 → 3

° 3 is destination
° Print path array ,

mark 3 as unvisited
• Remove 3 from path and backtrack

o → I

/ / I
visited : co

,
, ,

✓ L U path = 10,13

2 → 3

°

no unvisited adjacent node of I
° mark 1 as unvisited

,
remove from path and

backtrack

o → I visited -- 103

I f t path -- cos
2 → 3

• visit adjacent neighbour (2)
° mark as visited

o → I

/ f y
visited : co ,z,

✓ L U path = CO
,
2)

2 → 3

• 2 is not destination

! go to unvisited adjacent node (3)

mark as visited

o → I

/ f y
visited : co

,2,3]

✓ L U

path = CO
,2,33

2 → 3

void dfs_path(Node *adj_list[], int n, int source, int dest) {
 int *visited, *path, count = 0;

 // Out of bounds

 if (source < 0 || source >= n) {

 printf("Source not in graph.\n");

 return;

 }

 if (dest < 0 || dest >= n) {

 printf("Destination not in graph.\n");

 return;

 }

 // Initialise visited list and path list to 0s

 visited = (int *) calloc(n, sizeof(int));

 path = (int *) calloc(n, sizeof(int));

 // Call recursive function

 print_path(adj_list, source, dest, visited, path, count);
 printf("\n");

 // Free memory used by visited and path

 free(visited);

 free(path);

}

Code Implementation

• using adjacency list

// Recursive function

void print_path(Node *adj_list[], int source, int dest, int *visited, int
*path, int count) {

 // Mark node as visited and display

 visited[source] = 1;

 path[count] = source;

 ++count;

 // Print array if destination reached

 if (source == dest) {

 for (int i = 0; i < count; ++i) {

 printf("%d ", path[i]);

 }

 printf("\n");

 }

 else {

 for (Node *t = adj_list[source]; t != NULL; t = t->next) {
 if (!visited[t->data]) {

 print_path(adj_list, t->data, dest, visited, path, count);
 }

 }

 }

 // Backtrack

 --count;

 visited[source] = 0;

}

Enter the number of vertices: 4

Enter source and destination vertices: 0 1

Enter source and destination vertices: 0 2

Enter source and destination vertices: 1 2

Enter source and destination vertices: 1 3

Enter source and destination vertices: 2 3

Enter source and destination vertices: -1 -1

Enter source vertex: 0

Enter destination vertex: 3

0 1 2 3

0 1 3

0 2 3

Output

int bfs_path(Graph *adj_mat, int source, int dest) {

 int *visited, *queue, qr = -1, vertex;

 // Out of bounds

 if (source < 0 || source >= adj_mat->n) {

 printf("Source not in graph.\n");

 return 0;

 }

 if (dest < 0 || dest >= adj_mat->n) {

 printf("Destination not in graph.\n");

 return 0;

 }

 // Initialise visited list and queue (init 0)

 visited = (int *) calloc(adj_mat->n, sizeof(int));
 queue = (int *) calloc(adj_mat->n, sizeof(int));

 // Loop

 append(queue, source, &qr);
 visited[source] = 1;

USING BFS

• Simply check if there is a path connecting the source

and destination vertices

° To store path , each node should store the previous node
that was visited and then once a destination is

reached
,
the path can be traced

.

Code Implementation

 // While queue is not empty

 while (qr != -1) {

 vertex = delete(queue, &qr);

 // Destination reached

 if (vertex == dest) {

 return 1;

 }

 for (int i = 0; i < adj_mat->n; ++i) {

 if (adj_mat->adj[vertex][i] && !visited[i]) {
 visited[i] = 1;

 append(queue, i, &qr);

 }

 }

 }

 // Free memory used by visited and queue

 free(visited);

 free(queue);

 return 0;

}

void append(int *queue, int v, int *pqr) {

 ++(*pqr);

 queue[*pqr] = v;

}

int delete(int *queue, int *pqr) {

 int res = queue[0];

 for (int i = 0; i < *pqr; ++i) {

 queue[i] = queue[i + 1];

 }

 --(*pqr);

 return res;

}

Helper functions for queues

Connected Graphs

° If all other nodes can be visited from one node
,

the graph is connected (strongly connected)

2

I 3

5 4 6

. otherwise
,
disconnected

2

I 3

5 4 6

° Can be checked for using BFS or DFS

• weakly connected : all nodes visitable from any one node

Question 16

Check for connectivity

O l 3 4

2

Adjacency matrix

O l 2 3 4

O O l l O O

l l O l l O

L l l O l l

3 O l l 0 I

4 O O l l 0

Using BFS
f

(start with O)

Ift

queue
0

visited l O o o o

O l 2 3 4

f
a yr

queue
0 I 2

visited l l l o o

O l 2 3 4

f r

x x

queue
0/123

visited l l l l o

O l 2 3 4

f r

t d

queue 01/2/34

visited l l l l l

0 I 2 3 4

f

da
'

queue 0421314

visited l l l l l

0 I 2 3 4

empty - checked for O

queue 0421314

visited l l l l l

0 I 2 3 4

° repeat with all nodes

void create_graph(Graph *adj_mat, char undir) {

 int i, j;

 // Is graph undirected?

 int un = (undir == 'y' || undir == 'Y');

 for (int i = 0; i < adj_mat->n; ++i) {

 for (int j = 0; j < adj_mat->n; ++j) {

 adj_mat->adj[i][j] = 0;

 }

 }

 while (1) {

 printf("Enter source and destination vertices: ");
 scanf("%d %d", &i, &j);

 if (i < 0 && j <= 0 || i >= adj_mat->n || j >= adj_mat->n) {
 break;

 }

 adj_mat->adj[i][j] = 1;

 if (un) {

 adj_mat->adj[j][i] = 1;

 }

 }

}

Code Implementation

° create graph function for directed Es undirected graphs
. Using BFS

' bfs- con for strongly connected graphs
° can also do with DFS

int bfs_con(Graph *adj_mat) {

 int *visited, *queue, qr = -1;

 visited = (int *) calloc(adj_mat->n, sizeof(int));
 queue = (int *) calloc(adj_mat->n, sizeof(int));

 for (int start = 0; start < adj_mat->n; ++start) {
 // Initialise visited array

 for (int i = 0; i < adj_mat->n; ++i) {

 visited[i] = 0;

 }

 append(queue, start, &qr);

 visited[start] = 1;

 int vertex;

 // While queue is not empty

 while (qr != -1) {

 // Dequeue first element

 vertex = delete(queue, &qr);

 // Enqueue all unvisited connections

 for (int i = 0; i < adj_mat->n; ++i) {

 if (adj_mat->adj[vertex][i] && !visited[i]) {
 visited[i] = 1;

 append(queue, i, &qr);

 }

 }

 }

 // Check visited array

 for (int i = 0; i < adj_mat->n; ++i) {

 if (!visited[i]) {

 free(visited);

 free(queue);

 return 0;

 }

 }

 }

 // Free memory used by visited and queue

 free(visited);

 free(queue);

 return 1;
}

initialise to o

append start vertex to queue
and mark as visited

computer Network Topology

1
. Ring Topology (cycle)

e all vertices have degree --2
. no of edges = no of vertices

A B

F C

D
E

2. Star topology

° no . Of links -

- no . of nodes - I
• one central vertex connected to all others

c B

A

F D

E

3
. Mesh topology

° complete graph

A B

F C

E D

4 . Bus Topology

°

every node has degree -- 2 except ending nodes which
have degree -- 2

A B c D E F

° most networks are combination of all

Presence of cycle in Graph

Graph tree generated
while traversing

o o
→

,

-
← tree edge

l
l l

l

l

2

'

i
2

O is adjacent to 2 Ee
has already been
visited land is not
a parent)

° If a non- parent adjacent node to a node has

already been visited
,
there is a cycle in the graph

• More than one way to get to a node

int dfs_cycle(Graph *adj_mat) {

 /* For a connected graph */

 int *visited;

 /* Initialise visited list and queue (init 0) */

 visited = (int *) calloc(adj_mat->n, sizeof(int));

 int res = dfs(adj_mat, 0, visited, -1);

 /* Free memory used by visited and queue */

 free(visited);

 return res;

}

int dfs(Graph *adj_mat, int vertex, int *visited, int parent) {
 int res;

 visited[vertex] = 1;

 for (int i = 0; i < adj_mat->n; ++i) {

 /* If the connection exists and is not the parent */
 if (adj_mat->adj[vertex][i] && i != parent) {

 /* If the child is visited */

 if (visited[i]) {

 return 1;

 }

 /* If child is not visited */

 else {

 res = dfs(adj_mat, i, visited, vertex);
 if (res) return res;

 }

 }

 }

 return 0;

}

Code Implementation
c-

called by main

c- parent
T vertex

c- mark visited

← MYarent

Articulation Point

° Also called cut vertex

° Vertex that when removed makes a graph disconnected
(can be multiple)

° Important to identify in computer networks as failure
of this point can result in splitting of network

O 2

6 I 3

^

5 4
cut
vertex

Question 17

Find articulation points

2 articulation

← f
points

0 I 2 3

Question 18

Find APs
IAP

←

I 4 2

O 3

Algorithm

1) Remove one vertex and check for connectivity

2) Repeat for all vertices

3) can find all articulation points

4) Can perform either DFS or BFS

5) If graph disconnected when any one vertex has

been removed
,
that vertex is an articulation point

INDEXING USING B-TREES

° large data records to be stored on secondary memory
when RAM is not large enough

stepper
motor motor

tracks on
Cd

HD NW head
→ ← I -o

l l
l

,

i t sector,
I

I

° Block -

- I track 6 1 Sector

eg : E3, Sl

° Each track has several blocks
,
each of same size

(based on number of sectors)

° Block 1 : 512 bytes → example

° Disc access : make required block come under the

readywrite head (moves linearly)

° Entire block (eg: 512 bytes) transferred to RAM
,
even if

only single character required

• HD is block - controlled device
,
while keyboard is

character- controlled device

° Transferred through buffer

- can be sorted (ordered)
10000 or unordered

I block :
" ° For sorted data

, binary searcht 128 4

5121 !§8g 3 } B1 ° Need to access all blocks for
2 linear search (unordered) for
l
y worst case scenario

each is one . Want to minimise number

record of block accesses (search time)
stored in SM
(128 bytes) o need 2500 blocks

° Create an index page

Index SM
say, lobyty →

4 bytes
l id ptr I

÷:i%:S:/ ? ' blow:/ :4 records
4

(512's 14)
:

10000 10000

ordered

10000 ÷ 36 = 280 blocks 1000074=2500 blocks

worst case : 280 worst case: 2500

° ignoring access within block of 4

° Index page for an index page (reduce even further)

°

Range of ids stored in 2nd index table / page

B-Tree

• Multiway search tree ; based on BST

• Good for creating indices

. can have as many keys g branches in a multiway
search tree

co
←

2 keys

/ y yd
3 branches

less than b/w log greater
10 20 than 20

. For strict non-linearity and 040gCND time, multiway
search tree must be balanced

. Balanced multiway search tree : B-tree (Bayer tree)
balanced tree / Fat tree)

° Restrictions for preventing skewedness in multiway
search tree

° Order m : at most m children

B -tree of order m

1) All leaves on same level

2) All internal nodes except the root have at most (m)
non- empty children and at least lmk7 non-empty
children

,
at most cm-D keys and at least tmlz - 17

keys (non- root)

3) Number of keys in each internal node is one less than

the number of non- empty children and partitioning is
based on search tree concept

K
, K2

(ki 7 KL

>K, G

c , Cz
' "
'

Cz

4) Root Max : m children and min : 2 children 10 children

construction of a B-Tree 1 Insertion

Question 19

B-Tree of order 5

50
,
60
,
20
,
10
,
30
,
40
,
5
,
8
,
80
,
100

min keys
-

- fifty -
- 2

Max keys = 5-I = 4

min nodes = TSI I =3

Max nodes = 5

o note : Keys will stop getting added only after they
have reached max

Step t
Read 50 ← key

50

Step 2
Read 60 ← keys

50
,
60

Step3
Read 20 ←

in order

20
, 50,60

Step 4
Read 10 ←

in order

10,20 , 50,60

Step 5
←
overflow

Read 30
10
, 20,30 , 50,60

° Take middle Ee split (for even , can choose bias)

30

10,20 50,60

Step 6
Read 40

• Added to leaves (bottom- up)

30

10,20 40,50 , 60

Step 7
Read 5

30

5
, 10,20 40,50160

Steps
Reads

30

5,8>10,20 40,50160

Step 9
Read 80

30

5,8>10,20 40,50 , 60,80

Step 10

Read 100

30 overflow
t

5
, 8,10 , 20 40,50 , 60, 80,100

° Take middle Ee split Cadd to topmost node)

30 go
← if this ever overflows

,

> split and move up

5
, 8,10 , 20 80,100

40,50

° Each level is a level of indexing
. Also called fat tree (short Eg wide)

Deletion in B-Trees

• Deletion can be internal node or leaf node

D Non- leaf / internal node

• its immediate predecessor / successor will be in a leaf
°

promote immediate predecessor / successor to position of
deleted node

2) Leaf node

lil case I - leaf contains keys > min no
.
of keys

e simply delete the key

iii) case 2 - leaf contains min no . of keys

• first look at two adjacent leaves (immediate) and are
children of same parent

• if one of them has more than min
,
move key to

parent and move parent to deletion position

° if adjacent leaf has only minimum number of
entries

,
then two leaves and the median entry from

parent are combined as new leaf which will

contain no more than the maximum no . of

entries

• If this step leaves the parent node with few entries
,

the process propagates upwards

Question 20

Delete node S

"
internal node ; replace

Cf ms
← with successor

(child has

ab
de

ghi q np
tax

sufficient nodes)

j

cf

mtg
ab

de
ghi kl np

tax

j

Cf Mt

ab
de

ghi KL np Ux

Question 21

Delete node h

j

Cf Ms

ab
de

ghi kl np
tux

"
(leaf node

,
7 min no . of keys)

j

Cf Ms

ab
de gi kl np

tax

Question 22

Delete node p
j

Cf Ms

ab
de

ghi KL np
tax

j

of

Msg)
ab

de
ghi KL npx

tax

j

Cf Mt

ab
de

ghi KL ns UX

Question 23

Delete node d

j

Cf Mt

ab
de gi KL ns UX

j

Cf Mt

ab
de gi kl ns Ux

T
both adjacent nodes
have min; merge

j

Ocf Mt

d
gi u ns Ux

merge

① min no. of keys;
cannot donate

below → f⇐←

y propagatedmin keys merge
upwards

abce gi u ng UX

height fjmt
reduced

UX

able
gi ke

ns

Question 24

Delete node j
j

Cf Mr

ab
de ghi kl np Stax

*
r predecessor

of / mr

ab
de

9h10 kl np Stax

i

Cf Mr

ab
de 9h Kl np Stax

Question 25

Delete node c

j

Cf Mr

ab
de ghi kl np Stax

successor
j

Off Mr

ab Ide ghi a rip Stax

j

d⑦ mr

T

ab
e
)/⑨hi

a rip Stax

j

dog mr

ab
ef

hi KL np Stax

Question 26

Delete node 4 Cm --3)

6,17 min keys
-
- TZ- 17=1

Max keys -_ 13-17=2

4
19,22

213 12
5

10 16
18 20 25

6,17

(* 19,22

2130 12
5

10 16
18 20 25

6,17

3
19
, 22

2 12
5

10 16
18 20 25

Question 27

Delete node 12

6,17

4
19
, 22

213 12
5

10 16
18 20 25

6,17

4
19
, 22

213 g
* 9

10 16
18 20 25

6,17

4

213 g
④

19
, 22

10 ¥-0 18 20 25

⑥ 17

④→ I
19,22

213 5

10,16 18 20 25

17

4,6
19,22

2,3
s 101lb

1g 20 25

